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Abstract

This paper introduces the Minimum Distance Lasso [1] (MD-Lasso) estimation

method for variable selection and parameter estimation in high-dimensional sparse

linear regression models. High-dimensional data analysis involves models where the

number of parameters, p, is comparable to or larger than the sample size, n. Tradi-
tional regression methods often face challenges, such as overfitting and sensitivity

to outliers, when applied to such data. The proposed MD-Lasso method integrates

minimum distance functionals, com- monly used in non-parametric estimation for

robustness, with L1-regularization to achieve variable selection and parameter esti-

mation simultaneously. The MD-Lasso method is governed by a scaling parameter

that limits the influence of outliers, maintaining robustness in high-dimensional

regression problems. Compared to conventional optimization methods like those

previously used for MD estimators, this paper employs a gradient descent opti-

mization approach, demonstrating its superiority through numerical simulations.

The results show that MD-Lasso outperforms traditional methods, such as Ridge

and standard Lasso re- gression, in terms of Mean Absolute Error (MAE) and Mean

Squared Error (MSE). The MD-Lasso estimator provides robust and accurate es-

timates in the presence of noise and outliers, making it an e↵ective approach for

analyzing high-dimensional data.

1 Introduction

In recent years, advancements in technology have enabled the simultaneous recording and
analysis of numerous variables in datasets, where the number of variables is often larger
than the sample size. This is commonly referred to as high-dimensional data. Such
datasets require new approaches for analysis, as traditional regression methods, which
often face challenges with outliers, are not reliable. Methods that are robust against out-
liers, such as those utilizing statistical robustness techniques, are more suitable. Sparse
models in high-dimensional settings often need e�cient estimators that can handle out-
liers e↵ectively.

One of the e�cient estimation methods for high-dimensional regression is the Least
Absolute Shrinkage and Selection Operator (Lasso), introduced by Tibshirani [3]. Lasso
estimates regression coe�cients by minimizing the sum of squared errors while applying
an L1 penalty to reduce the number of non-zero coe�cients. This method performs well
in variable selection and model interpretation.
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The Minimum Distance Lasso method proposed by Yang and Lozano (2016) is rec-
ognized for its robustness and e�ciency in handling outliers. It uses minimum distance
functionals in a non-parametric context with an L1 penalty, combining robustness with
sparsity.

2 Problem Overview

In statistical data analysis, one of the influential factors is the presence of outliers obser-
vations that deviate significantly from the rest of the data. Robust methods, which are
not overly influenced by outliers, are necessary for reliable inference. In high-dimensional
models, where the number of predictors is large, the issue of variable selection becomes
crucial. Regularization and shrinkage methods, such as Lasso, are used to achieve accu-
rate estimates by incorporating a penalty term.

2.1 Least Absolute Shrinkage and Selection Operator (Lasso)

Lasso is a regularization method proposed by Tibshirani (1996). It performs variable
selection and shrinkage simultaneously by imposing an L1 penalty on the absolute values
of the regression coe�cients. The Lasso regression model is formulated as:
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In this formula, � is the regularization parameter that controls the sparsity of the
model. A larger � leads to more coe�cients being shrunk to zero, simplifying the model.

The penalty function used in Lasso is:
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which causes some coe�cients to be exactly zero when � is large, e↵ectively performing
variable selection.

Model Introduction

2.2 Problem Formulation and Notation

Consider a matrix X 2 Rn⇥p, where each row represents an observation and each column
represents a predictor variable. Let Y 2 Rn be the response vector, and � 2 Rp be the
vector of coe�cients. The goal is to estimate � using a model:

Y = X� + ⌘

where ⌘ 2 Rn represents the error term. For simplicity, we assume that �0 = 0. To
estimate �, the following regularized loss function is minimized:

��n = argmin
�

(L(�) + �nk�k1)
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where L(�) represents the loss function, and �n is the regularization parameter for
the L1 penalty.

2.3 Minimum Distance Estimator for High-Dimensional Regres-
sion

To evaluate the e↵ectiveness of the Minimum Distance Lasso (MD-Lasso) estimator,
we start with the Minimum Distance (MD) estimator for high-dimensional regression.
Suppose we have a random vector X 2 Rp and a response variable Y 2 R. The goal is to
estimate the conditional distribution of Y given X. The MD estimator aims to minimize
the L2 distance between the estimated and true conditional distributions.

The Minimum Distance (MD) function is defined as:

d(�) =

Z
[f(Y |X; �)� f(Y |X)]2 dY

Expanding this function gives:

d(�) =

Z
f 2(Y |X; �) dY � 2E[f(Y |X; �)] + constant

Here, f(Y |X; �) is the estimated conditional density function, and f(Y |X) is the true
conditional density. For simplicity, assume that the error term follows a multivariate
normal distribution N(X 0�, �2I). Thus, the conditional density function can be written
as:

f(Y |X; �) =
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The empirical expectation E[f(Y |X; �)] is approximated by:
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Therefore, the empirical distance function becomes:
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Using this, the objective function for the MD-Lasso method is defined as:
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where c is a scaling parameter. The MD-Lasso estimator is given by:
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This formulation shows that the MD-Lasso method remains robust in the presence of
outliers and performs well for high-dimensional sparse data.
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3 Numerical Calculations and Results

In this section, we analyze the performance of the MD-Lasso method for parameter
estimation in high-dimensional models. The MD-Lasso, Ridge, and Lasso methods are
compared based on their Mean Absolute Error (MAE) and Mean Squared Error (MSE)
across di↵erent levels of noise and model complexity.

3.1 Synthetic Data

A simulation study is conducted in three stages using Gaussian noise to assess the e↵ec-
tiveness of the MD-Lasso method:

• Stage 1: 100 samples with 200 variables and a noise level of 10.

• Stage 2: 100 samples with 500 variables and a noise level of 10.

• Stage 3: 100 samples with 200 variables and a noise level of 10.

In all stages, the MD-Lasso method demonstrates superior results in terms of robust-
ness and e�ciency for high-dimensional data with noise.

Table 1: Summary of Results from Three-Stage Simulation Study

Method Stage 1 (MAE/MSE) Stage 2 (MAE/MSE) Stage 3 (MAE/MSE)
Ridge 90.07/14514.48 74.73/8806.98 126.20/19891.34
Lasso 1.98/3.95 14.75/45.28 21.11/633.15

MD-Lasso 1.41/3.02 11.14/12.08 17.81/283.12

3.2 Data Analysis

The performance of di↵erent methods is assessed using a 5-fold cross-validation method
for tuning hyperparameters. In each iteration, 80% of the data is randomly selected for
training, and 20% is used for testing. For MD-Lasso, the gradient descent algorithm is
applied to obtain optimal estimates, aiming to minimize Mean Absolute Error (MAE)
and Mean Squared Error (MSE).

As demonstrated in Table 1, MD-Lasso outperforms Ridge and traditional Lasso in
predictive performance, with lower MAE and MSE. The robustness of MD-Lasso against
outliers makes it a more practical and e↵ective approach for high-dimensional noisy data.

4 Discussion

The MD-Lasso method shows great potential for robust parameter estimation and vari-
able selection in high-dimensional regression models, particularly when dealing with data
that contains noise and outliers. The gradient descent optimization approach further en-
hances the method’s applicability, providing more reliable results. Future research could
explore additional optimization techniques or consider di↵erent types of penalty functions
to further improve the performance of the MD-Lasso estimator.
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